-
Monodispersed PEGs
- >Methoxy PEG (mPEG)
- >Azide(N3) PEG
- >Amine(NH2) PEG
- >Hydroxyl(OH) PEG
- >Thiol(SH) PEG
- >Boc/Fmoc PEG
- >Carboxylic Acid(COOH) PEG
- >Maleimide(Mal) PEG
- >NHS ester PEG
- >Biotin PEG
- >Aldehyde (Ald/CHO)PEG
- >Acrylate(AC) PEG
- >Acrylamide(ACA) PEG
- >DBCO PEG
- >DSPE PEG
- >Other Lipid PEG
- >Fluorescent (FITC) PEG
- >Rhodamine B(RB) PEG
- >Cholesterol PEG
- >OPSS PEG
- >Epoxide (EPO) PEG
- >Hydrazide (HZ) PEG
- >Folic Acid(FA) PEG
- >Lipoic acid(LA) PEG
- >Methacrylate (MA) PEG
- >Silane PEG
- >PEG Sulfonic acid
- >PEG PFP ester
- >PEG TFP ester
- >Halide (F,Cl,Br,I) PEG
- >Benzyl-PEG
- >Aminooxy PEG
- >Hydrocarbons PEG
- >Nitrophenyl Carbonate (NPC) PEG
- >DNP PEG
- >Other PEG
- >PROTAC Linker
- >View More
-
Polydispersed PEGs
- >Methoxy PEG (mPEG)
- >Azide(N3) PEG
- >Amine(NH2) PEG
- >Hydroxyl(OH) PEG
- >Thiol(SH) PEG
- >DSPE PEG
- >Carboxylic Acid(COOH) PEG
- >Maleimide(Mal) PEG
- >NHS ester PEG
- >Other Lipid PEG
- >Acrylate(AC) PEG
- >Boc/Fmoc PEG
- >Biotin PEG
- >Aldehyde (Ald/CHO)PEG
- >Fluorescent (FITC) PEG
- >Cyanine (Cy) PEG
- >Rhodamine B(RB) PEG
- >Cholesterol PEG
- >OPSS PEG
- >Acrylamide(ACA) PEG
- >Epoxide (EPO) PEG
- >Hydrazide (HZ) PEG
- >Folic Acid(FA) PEG
- >Lipoic acid(LA) PEG
- >Methacrylate (MA) PEG
- >Silane PEG
- >PLGA PEG
- >PCL PEG
- >PLA PEG
- >PEG Sulfonic acid
- >PEG PFP ester
- >Halide (F,Cl,Br,I) PEG
- >Aminooxy PEG
- >DBCO PEG
- >Hydrocarbons PEG
- >Nitrophenyl Carbonate (NPC) PEG
- >Other PEG
- >View More
-
Multi-arm PEGs
- >Hydroxyl(OH) PEG
- >NHS ester PEG
- >Amine(NH2) PEG
- >Maleimide(Mal) PEG
- >Azide(N3) PEG
- >Thiol(SH) PEG
- >DBCO PEG
- >Carboxylic Acid(COOH) PEG
- >Aldehyde (Ald/CHO)PEG
- >Methoxy PEG (mPEG)
- >Acrylate(AC) PEG
- >Biotin PEG
- >Cholesterol PEG
- >OPSS PEG
- >Acrylamide(ACA) PEG
- >Epoxide (EPO) PEG
- >Hydrazide (HZ) PEG
- >Folic Acid(FA) PEG
- >Lipoic acid(LA) PEG
- >Methacrylate (MA) PEG
- >Silane PEG
- >Halide (F,Cl,Br,I) PEG
- >Hydrocarbons PEG
- >Nitrophenyl Carbonate (NPC) PEG
- >Other PEG
- >View More
- PEGs by Application
- Lipids for Lipid Nanoparticles
- PEG Raw Material
CatalogID: 10084 Purity: ≥95%
-
Synonyms:
Thiol-PEG-Amine.HCl
-
Purity:
≥95% -
Recommended Storage Condition:
Store at -5°C,keep in dry and avoid sunlight. -
Uses:
Applicated in medical research, drug-release, nanotechnology and new materials research, cell culture. In the study of ligand, polypeptide synthesis support, a graft polymer compounds, new materials, and polyethylene glycol-modified functional coatings and other aspects of the active compound.
Thiol PEG Amine (SH-PEG-NH2.HCI) is a linear heterobifunctional PEGylation reagent with a thiol and an amine moiety. It can be used to modify proteins, peptides, and other materials or small molecules. The amino group (-NH2) can easily form stable amide bonds with carboxyl groups, as well as with reactive esters (-NHS) at pH 7-8.5. Thiol groups (-SH) and maleimide can easily form stable thioether bonds at PH6.5-7.5. Thiol (-SH) groups have high affinity for gold surfaces and are widely used for gold nanoparticles or gold film modification. PEGylation improves solubility and stability and reduces the immunogenicity of proteins and peptides. It can also inhibit the non-specific binding of charged molecules on the modified surface.
Biopharma PEG provides high purity SH-PEG-NH2 from grams to kilogram, even tons batch size in both non-GMP and GMP grades. Email at sales@biochempeg.com and start using a superior product for your next product R&D project.
Cited Publications
This PEG derivative has been cited in peer-reviewed scientific publications. Browse the references below to learn more.
- Horiguchi, Y.; Yasuura, M.; Ashiba, H.; Tan, Z.L.; Fukuda, T. Simple Binding and Dissociation of a Sialoglycoprotein Using Boronic Acid-Modified Functional Interfaces on Microparticles. Sensors 2024, 24, 1080. https://doi.org/10.3390/s24041080
- Chan, C. K., Szeto, C. C., Lee, L. K., Xiao, Y., Yin, B., Ding, X., Lee, T. W., Lau, J. Y., & Choi, C. H. (2023). A sub-10-nm, folic acid-conjugated gold nanoparticle as self-therapeutic treatment of tubulointerstitial fibrosis. Proceedings of the National Academy of Sciences, 120(42), e2305662120. https://doi.org/10.1073/pnas.2305662120
- Manuel M. Paz, Alberto Peinador Veiga, Tamara Regueira, Carlos Vázquez Vázquez, M. Arturo López Quintela, Facile generation of surface diversity in gold nanoparticles, Journal of Colloid and Interface Science, Volume 641, 2023, Pages 719-728, ISSN 0021-9797, https://doi.org/10.1016/j.jcis.2023.03.043.
- 1. Gonzalez-Garcia MC, Garcia-Fernandez E, Hueso JL, Paulo PMR, Orte A. Optical binding-driven micropatterning and photo-sculpting with silver nanorods. ChemRxiv. 2023; doi:10.26434/chemrxiv-2023-x2kjg
- Shirasu, T., Yodsanit, N., Xie, X., Zhao, Y., Wang, Y., Xie, R., Huang, Y., Wang, B., Urabe, G., Gong, S., Guo, L., & Kent, K. C. (2021). An adventitial painting modality of local drug delivery to abate intimal hyperplasia. Biomaterials, 275, 120968. https://doi.org/10.1016/j.biomaterials.2021.120968
- Liao, W., Chen, H., Tsai, Y., Tripathi, A., Paulose, A. K., Chang, J., & Wang, L. (2021). Rapid β-human chorionic gonadotropin detection in urine with electric-double-layer gated field-effect transistor biosensors and a handheld device. Biomicrofluidics, 15(2), 024106. https://doi.org/10.1063/5.0042522
View more publications citing Biopharma PEG products.

Cat.No:YS001023
Cat.No:HO058058
Cat.No:MD005005
Cat.No:MD068121
Cat.No:MD002002