Fmoc-NH-PEG36-COOH
Products
MSDS
Fmoc-NH-PEG36-COOH

CatalogID: 11815 Purity: ≥93% CAS NO.: 850312-72-0

  • CAS No.:
    850312-72-0
  • Synonyms:
    Fmoc-NH-PEG36-CH2CH2COOH
    Fmoc-NH-PEG36-acid
    Fmoc-amino-PEG36-propanoic acid
  • Purity:
    ≥93%
  • MF:
    C90H161NO40
  • MW:
    1897.22
  • Recommended Storage Condition:
    Store at -5°C,keep in dry and avoid sunlight.
  • Uses:

Fmoc-N-amido-PEG36-acid (Fmoc-NH-PEG36-COOH) is a PEG derivative containing an Fmoc-protected amine and a terminal carboxylic acid. The hydrophilic PEG spacer increases solubility in aqueous media. The Fmoc group can be deprotected under basic condition to obtain the free amine which can be used for further conjugations. The terminal carboxylic acid can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond

Numerous applications have used Fmoc-N-amido-PEG36-acid. Some applications of Fmoc-N-amido-PEG36-acid include the development of flexible antibodies with non-protein hinges, the development of optimized liposomes for intracellular protein delivery, and the development of conjugates for SPECT imaging of cancer in vivo.
Biopharma PEG offers a wide range of PEG products from lab to commercial scale in both non-GMP and GMP grades. Email at sales@biochempeg.com and start using a superior product for your next product R&D project.

References:
1. Lipo-Oligomer Nanoformulations for Targeted Intracellular Protein Delivery. Peng Zhang, Benjamin Steinborn, Ulrich Lachelt, Stefan Zahler, and Ernst Wagner. Biomacromolecules. 2017, June 26, 2017. DOI: 10.1021/acs.biomac.7b00666.
2. Flexible antibodies with nonprotein hinges. Daniel J. Capon, Naoki Kaneko, Takayuki Yoshimori, Takashi Shimada, Florian M. Wurm, Peter K. Hwang, Xiaohe Tong, Staci A. Adams, Graham Simmons, Taka-Aki Sato and Koichi Tanaka. The Japan Academy, Series B. 2011, 87 (9) pp 603-616. November 11, 2011. DOI: 10.2183/pjab.87.603.
3. A Systematic Analysis of Peptide Linker Length and Liposomal Polyethylene Glycol Coating on Cellular Uptake of Peptide-Targeted Liposomes. Jared F. Stefanick, Jonathan D. Ashley, Tanyel Kiziltepe, and Basar Bilgicer. ACS Nano. 2013, 7 (4) pp 2935–2947. February 19, 2013. DOI: 10.1021/nn305663e.
4. Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. Jared F. Stefanick, Jonathan D. Ashley, and Basar Bilgicer. ACS Nano. 2013, 7 (9) pp 8115–8127. August 29, 2013. DOI: 10.1021/nn4033954.
5. PEG-Peptide Conjugates. Ian W Hamley. Biomacromolecules. 2014, 15 (5) pp 1543-1559. April 1, 2014. DOI: 10.1021/bm500246w.
6. Evaluation of Nonpeptidic Ligand Conjugates for SPECT Imaging of Hypoxic and Carbonic Anhydrase IX-Expressing Cancers. Peng-Cheng Lv, Karson S. Putt, and Philip S. Low. Bioconjugate Chemistry. 2016, 27, pp 1762-1769. June 30, 2016. DOI: 10.1021/acs.bioconjchem.6b00271.
​7. Bioresponsive nanocarries for targeted intracellular delivery of proteins and peptides. Ruth Elisabeth and Johanna Roder. Dissertation zur Erlangung des Doktorgrades der Fakultat fur Chemie und Pharmazie der Ludwig-Maximilians-Universitat Munchen. 2016, pp 1-128.

Top